Petrucci • Harwood • Herring • Madura Ninth GENERAL CHEMISTRY

Principles and Modern Applications

Chapter 2: Atoms and the Atomic Theory

Philip Dutton University of Windsor, Canada Prentice-Hall © 2007

Contents

- 2-1 Early Chemical Discoveries and the Atomic Theory
- 2-2 Electrons and Other Discoveries in Atomic Physics
- 2-3 The Nuclear Atom
- 2-4 Chemical Elements
- 2-5 Atomic Mass

Contents

- 2-6 Introduction to the Periodic Table
- 2-7 The Concept of the Mole and the Avogadro Constant
- 2-8 Using the Mole Concept in Calculations

Focus On Occurrence and Abundances of the Elements

2-1 Early Discoveries and the Atomic Theory

Lavoisier 1774Law of conservation of mass

Proust 1799 Law of constant composition

Dalton 1803-1888 Atomic Theory

Copyright © 2007 Pearson Prentice Hall, Inc.

Conservation of Mass

Dalton's Atomic Theory

- ① Each element is composed of small particles called **atoms**.
- ② Atoms are neither created nor destroyed in chemical reactions.
- ③ All atoms of a given element are **identical.**
- ④ Compounds are formed when atoms of more than one element combine.

Consequences of Dalton's theory

- Law of Definite Proportions: combinations of elements are in ratios of small whole numbers.
- ☆ In forming carbon monoxide, 1.33 g of oxygen combines with 1.0 g of carbon.

In the formation of carbon dioxide
 2.66 g of oxygen combines with 1.0 g of carbon.

2-2 Electrons and Other Discoveries in Atomic Physics

General Chemistry: Chapter 2

Prentice-Hall © 2007

Properties of cathode rays

(a)

(b)

Electron m/e = -5.6857×10^{-9} g coulomb⁻¹

Charge on the electron

 ☆ From 1906-1914 Robert Millikan showed ionized oil drops can be balanced against the pull of gravity by an electric field.
 ☆ The charge is an *integral* multiple of the electronic charge, *e*.

Radioactivity

Radioactivity is the spontaneous emission of radiation from a substance.

- \Rightarrow X-rays and γ -rays are high-energy light.
- \Rightarrow α -particles are a stream of helium nuclei, He²⁺.
- \Rightarrow β-particles are a stream of high speed electrons that originate in the nucleus.

Copyright © 2007 Pearson Prentice Hall, Inc.

2-3 The Nuclear Atom

Geiger and Rutherford

The α -particle experiment

Most of the mass and all of the positive charge is concentrated in a small region called the nucleus .

☆ There are as many electrons outside the nucleus as there are units of positive charge on the nucleus

If the atom is the Houston Astrodome

Then the nucleus is a marble on the 50 yard line

Chadwick's Experiment (1932)

H atoms - 1 p; He atoms - 2 p mass He/mass H should = 2 measured mass He/mass H = 4

$$\alpha + {}^{9}\text{Be} \longrightarrow {}^{1}n + {}^{12}\text{C} + \text{energy}$$

neutron (n) is neutral (charge = 0) n mass ~ p mass = $1.67 \times 10^{-24} \text{ g}$

Nuclear Structure

Atomic Diameter 10⁻⁸ cm 1 Å

Nuclear diameter 10⁻¹³ cm

Particle	Mass		Electric Charge	
	kg a	amu	Coulombs	(e)
Electron	9.1094×10^{-31} (0.00054858	-1.6022×10^{-19}	-1
Proton	1.6726×10^{-27}	1.0073	$+1.6022 \times 10^{-19}$	+1
Neutron	1.6749×10^{-27}	1.0087	0	0

Scale of Atoms

*The heaviest atom has a mass of only 4.8×10^{-22} g and a diameter of only 5×10^{-10} m.

Useful units:

☆ 1 amu (atomic mass unit) = 1.66054 × 10⁻²⁴ kg
☆ 1 pm (picometer) = 1 × 10⁻¹² m
☆ 1 Å (Angstrom) = 1 × 10⁻¹⁰ m = 100 pm = 1 × 10⁻⁸ cm

Biggest atom is 240 amu and is 50 Å across. Typical C-C bond length 154 pm (1.54 Å) Molecular models are 1 Å /inch or about 0.4 Å /cm

Slide 22 of 34

2-4 Chemical Elements

*****To represent a particular atom we use symbolism:

number p + number n $\longrightarrow_{A_{Z}}^{A_{Z}} E^{\pm ?}$ — number p – number e

A= mass number Z = atomic number

Slide 23 of 34

General Chemistry: Chapter 2

Prentice-Hall © 2007

Isotopic Masses

2-5 Atomic Mass

Relating the Masses and Natural Abundances of Isotopes to the Atomic Mass of an Element. Bromine has two naturally occurring isotopes. One of them, bromine-79 was a mass of 78.9183 u and an abundance of 50.69%. What must be the mass and percent natural abundance of the other, bromine-81?

What do we know:

The sum of the percent natural abundances must be 100%.

The average mass of bromine (read from the periodic table) is the weighted contribution of the percent abundance times the mass of each contributing isotope. Recall equation 2.3.

Strategy

Identify the unknown abundance of bromine-81 by calculation. Use this value in the equation for the average mass of an element to solve for the mass of the unknown isotope. Recall equation 2.3.

Solution

Write the general equations

 $100\% = \chi_1 + \chi_2 + \chi_3 \dots$

Atomic mass = $\chi_1 \times m_1 + \chi_2 \times m_2 + \chi_3 \times m_3 \dots$

Calculate

The Periodic Table

- Read atomic masses.
- Read the ions formed by main group elements.
- Read the electron configuration.
- Learn trends in physical and chemical properties.

We will discuss these in detail later

The Mole

- Physically counting atoms is impossible.
- We must be able to relate measured mass to numbers of atoms.
 - buying nails by the pound or kilogram.
 - using atoms by the gram

Avogadro's number

The mole is an amount of substance that contains the same number of elementary entities as there are carbon-12 atoms in *exactly* 12 g of carbon-12.

$$N_{\rm A} = 6.02214199 \times 10^{23} \text{ mol}^{-1}$$

The Mole

General Chemistry: Chapter 2

Prentice-Hall © 2007

Molar Mass

• The molar mass, *M*, is the mass of one mole of a substance.

 $M(g/\text{mol} {}^{12}\text{C}) = A(g/\text{atom} {}^{12}\text{C}) \times N_A(\text{atoms} {}^{12}\text{C}/\text{mol} {}^{12}\text{C})$

Combining Several Factors in a Calculation—Molar Mass, the Avogadro Constant, Percent Abundance. Potassium-40 is one of the few naturally occurring radioactive isotopes of elements of low atomic number. Its percent natural abundance among K isotopes is 0.012%. How many 40K atoms do you ingest by drinking one cup of whole milk containing 1.65 mg of K/mL?

Want atoms of ⁴⁰K, need atoms of K,

Want atoms of K, need moles of K,

Want moles of K, need total mass of K and M(K) (the molar mass).

Convert concentration of K (mg/mL K) into mass of K (g K) $c_{K}(mg/mL) \times V(mL) \rightarrow m_{K}(mg) \times (1g/1000mg) \rightarrow m_{K}(g)$ $n_{K} = (1.65 mg/mL K) \times (225 mL) \times (1 g/1000 mg)$ = 0.371 g K

Convert mass of K(g K) into moles of K (mol K) $m_{K}(g) \times 1/M_{K}(mol/g) \rightarrow n_{K}(mol)$ $n_{K} = (0.371 \text{ g K}) \times (1 \text{ mol K}) / (39.10 \text{ g K})$ $= 9.49 \times 10^{-3} \text{ mol K}$

Convert moles of K into atoms of ⁴⁰K

 $n_{K}(\text{mol}) \times N_{A} \rightarrow \text{atoms } K \times 0.012\% \rightarrow \text{atoms } {}^{40}\text{K}$ atoms ${}^{40}\text{K} = (9.49 \times 10^{-3} \text{ mol } \text{K}) \times (6.022 \times 10^{23} \text{ atoms } \text{K/mol } \text{K})$ x (1.2 × 10^{-4 40}K/K) = 6.9 × 10^{17 40}K atoms

Note that the text shows two slightly different methods.

There is often more than one correct way to solve a problem, but the strategy for the solution is often the same for any of the calculations.

Slide 39 of 34

End of Chapter Questions

- Problem solving is an integral part of the learning process.
- You must exercise your skills just like a varsity athlete does.
- Use your coaches, they can help you with skills for success.